48 research outputs found

    Electroanalytical Overview: The Determination of Levodopa (L-DOPA)

    Get PDF
    L-DOPA (levodopa) is a therapeutic agent which is the most effective medication for treating Parkinson’s disease, but it needs dose optimization, and therefore its analytical determination is required. Laboratory analytical instruments can be routinely used to measure L-DOPA but are not always available in clinical settings and traditional research laboratories, and they also have slow result delivery times and high costs. The use of electroanalytical sensing overcomes these problems providing a highly sensitivity, low-cost, and readily portable solution. Consequently, we overview the electroanalytical determination of L-DOPA reported throughout the literature summarizing the endeavors toward sensing L-DOPA, and we offer insights into future research opportunities

    Electroanalytical overview: the electroanalytical sensing of hydrazine

    Get PDF
    In this overview, we explore the electroanalytical sensing of the important chemical reagent hydrazine, highlighting the plethora of electrochemical sensing strategies utilised from the first reports in 1951 to the present day. It is observed that a large proportion of the work developing electrochemical sensors for hydrazine focus on the use of metallic nanoparticles and some other surface modifications, although we note that the advantages of such strategies are often not reported. The use of nanoparticle-modified electrodes to this end is explored thoroughly, indicating that they allow the same electrochemical response as that of a macroelectrode made of the same material, with clear cost advantages. It is recommended that significant studies exploring the surface coverage/number of nanoparticles are performed to optimise electroanalytical devices and ensure that thin-layer effects are not producing false observations through electrocatalysis. Development of these sensor platforms has begun to transition away from classical macroelectrodes, toward more mass producible supporting electrodes such as screen-printed and inkjet-printed electrodes. We suggest significant advances in this area are still to be found. The vast majority of developed electroanalytical sensors for hydrazine are tested in aqueous based environments, such as tap, river and industrial effluent waters. There is significant scope for development of hydrazine sensors for gaseous environments and biologically relevant samples such as blood, serum and urine, aiming to produce sensors for accurate occupational exposure monitoring. Finally, we suggest that the levels of publications with independent validation of hydrazine concentrations with other well-established laboratory-based measurements is lacking. We believe that improving in these areas will lead to the development of significant commercial products for the electroanalytical detection of hydrazine

    Erratum to “Electroanalytical Overview: The detection of the molecule of murder atropine” [Talatan Open, 2021, 100073](S2666831921000436)(10.1016/j.talo.2021.100073)

    Get PDF
    The publisher regrets that the Conflict of interest was not published along with the manuscript. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The publisher would like to apologise for any inconvenience caused

    Electroanalytical overview: the determination of manganese

    Get PDF
    Manganese is an essential nutrient of the human body but also toxic at elevated levels with symptoms of neurotoxicity reported, therefore its analytical determination is required. Manganese (II) is ingested primarily through food and drinking water so its routine monitoring in such samples is essential. While laboratory based analytical instrumentation can be routinely used to measure manganese (II), there is a need to develop methods for manganese (II) determination that can be performed in-the-field utilizing simple and inexpensive instrumentation yet providing comparable sensitive analytical measurements. Electrochemistry can provide a solution with instrumentation readily portable and hand-held coupled with electrochemical sensing platforms that are sensitive and provide on-site rapid analytical measurements. Consequently, in this overview we explore the electroanalytical determination of manganese (II) reported throughout the literature and offer insights into future research opportunities within this important field

    Electroanalytical overview: utilising micro- and nano-dimensional sized materials in electrochemical-based biosensing platforms.

    Get PDF
    Research into electrochemical biosensors represents a significant portion of the large interdisciplinary field of biosensing. The drive to develop reliable, sensitive, and selective biosensing platforms for key environmental and medical biomarkers is ever expanding due to the current climate. This push for the detection of vital biomarkers at lower concentrations, with increased reliability, has necessitated the utilisation of micro- and nano-dimensional materials. There is a wide variety of nanomaterials available for exploration, all having unique sets of properties that help to enhance the performance of biosensors. In recent years, a large portion of research has focussed on combining these different materials to utilise the different properties in one sensor platform. This research has allowed biosensors to reach new levels of sensitivity, but we note that there is room for improvement in the reporting of this field. Numerous examples are published that report improvements in the biosensor performance through the mixing of multiple materials, but there is little discussion presented on why each nanomaterial is chosen and whether they synergise well together to warrant the inherent increase in production time and cost. Research into micro-nano materials is vital for the continued development of improved biosensing platforms, and further exploration into understanding their individual and synergistic properties will continue to push the area forward. It will continue to provide solutions for the global sensing requirements through the development of novel materials with beneficial properties, improved incorporation strategies for the materials, the combination of synergetic materials, and the reduction in cost of production of these nanomaterials

    Additively manufactured rotating disk electrodes and experimental setup

    Get PDF
    This manuscript details the first report of a complete additively manufactured rotating disk electrode setup, highlighting how high-performing equipment can be designed and produced rapidly using additive manufacturing without compromising on performance. The additively manufactured rotating disk electrode system was printed using a predominantly acrylonitrile butadiene styrene (ABS) based filament and used widely available, low-cost electronics, and simplified machined parts to create. The additively manufactured rotating disk electrode system costs less than 2% of a comparable commercial solution (£84.47 ($102.26) total). The rotating disk electrode is also additively manufactured using a carbon black/polylactic acid (CB/PLA) equivalent, developing a completely additively manufactured rotating disk electrode system. The electrochemical characterization of the additively manufactured rotating disk electrode setup was performed using hexaamineruthenium(III) chloride and compared favorably with a commercial glassy carbon electrode. Finally, this work shows how the additively manufactured rotating disk electrode experimental system and additive manufactured electrodes can be utilized for the electroanalytical determination of levodopa, a drug used in the treatment of Parkinson's disease, producing a limit of detection of 0.23 ± 0.03 μM. This work represents a step-change in how additive manufacturing can be used in research, allowing the production of high-end equipment for hugely reduced costs, without compromising on performance. Utilizing additive manufacturing in this way could greatly enhance the research possibilities for less well-funded research groups

    Electroanalytical overview: the sensing of hydroxylamine

    Get PDF
    One of the principal raw ingredients used in the manufacturing of pharmaceuticals, nuclear fuel, and semiconductors is hydroxylamine, a mutagenic and carcinogenic substance, ranking high on the list of environmental contaminants. Electrochemical methods for monitoring hydroxylamine have the advantage of being portable, quick, affordable, simple, sensitive, and selective enough to maintain adequate constraints in contrast with conventional yet laboratory based quantification methods. This review outlines the most recent advancements in electroanalysis directed toward the sensing of hydroxylamine. Potential future advancements in this field are also offered, along with a discussion of method validation and the use of such devices in real samples for the determination of hydroxylamine

    Electroanalytical overview: the measurement of ciprofloxacin

    Get PDF
    Ciprofloxacin is a third-generation synthetic fluoroquinolone antibacterial drug which has been used as a broad-spectrum antibiotic to treat a number of bacterial infections. An excessive use or an overdose of ciprofloxacin can result in several adverse effects to humans and therefore its measurement is critical. Electroanalytical based sensors for ciprofloxacin have advantages over laboratory quantification methods, offering cost-effective, rapid, and portable sensing, which are also sensitive and selective. We chart the succession of electroanalytical methodologies directed toward the detection of ciprofloxacin, which starts off with mercury and then turns to using metal oxides, nanomaterials and finally molecular imprinted polymers. Within this perspective, we offer insights into future development in this field for the sensing of ciprofloxacin

    Electroanalytical overview: the sensing of carbendazim

    Get PDF
    Carbendazim is a broad-spectrum systemic fungicide that is used to control various fungal diseases in agriculture, horticulture, and forestry. Carbendazim is also used in post-harvest applications to prevent fungal growth on fruits and vegetables during storage and transportation. Carbendazim is regulated in many countries and banned in others, thus, there is a need for the sensing of carbendazim to ensure that high levels are avoided which can result in potential health risks. One approach is the use of electroanalytical sensors which present a rapid, but highly selective and sensitive output, whilst being economical and providing portable sensing platforms to support on-site analysis. In this minireview, we report on the electroanalytical sensing of carbendazim overviewing recent advances, helping to elucidate the electrochemical mechanism and provide conclusions and future perspectives of this field

    Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety

    Get PDF
    Robust, reliable, and affordable analytical techniques are essential for screening and monitoring food and water safety from contaminants, pathogens, and allergens that might be harmful upon consumption. Recent advances in decentralised, miniaturised, and rapid tests for health and environmental monitoring can provide an alternative solution to the classic laboratory-based analytical techniques currently utilised. Electrochemical biosensors offer a promising option as portable sensing platforms to expedite the transition from laboratory benchtop to on-site analysis. A plethora of electroanalytical sensor platforms have been produced for the detection of small molecules, proteins, and microorganisms vital to ensuring food and drink safety. These utilise various recognition systems, from direct electrochemical redox processes to biological recognition elements such as antibodies, enzymes, and aptamers; however, further exploration needs to be carried out, with many systems requiring validation against standard benchtop laboratory-based techniques to offer increased confidence in the sensing platforms. This short review demonstrates that electroanalytical biosensors already offer a sensitive, fast, and low-cost sensor platform for food and drink safety monitoring. With continued research into the development of these sensors, increased confidence in the safety of food and drink products for manufacturers, policy makers, and end users will result
    corecore